Automatic generation control application with craziness based particle swarm optimization in a thermal power system


Gozde H., TAPLAMACIOĞLU M. C.

INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, cilt.33, sa.1, ss.8-16, 2011 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 33 Sayı: 1
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1016/j.ijepes.2010.08.010
  • Dergi Adı: INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.8-16
  • Anahtar Kelimeler: Automatic generation control, CRAZYPSO, Thermal power system, PI-controller, LOAD-FREQUENCY CONTROL
  • Gazi Üniversitesi Adresli: Evet

Özet

In this study, a novel gain scheduling Proportional-plus-Integral (PI) control strategy is suggested for automatic generation control (AGC) of the two area thermal power system with governor dead-band nonlinearity. In this strategy, the control is evaluated as an optimization problem, and two different cost functions with tuned weight coefficients are derived in order to increase the performance of convergence to the global optima. One of the cost functions is derived through the frequency deviations of the control areas and tie-line power changes. On the other hand, the other one includes the rate of changes which can be variable depends on the time in these deviations. These weight coefficients of the cost functions are also optimized as the controller gains have been done. The craziness based particle swarm optimization (CRAZYPSO) algorithm is preferred to optimize the parameters, because of convergence superiority. At the end of the study, the performance of the control system is compared with the performance which is obtained with classical integral of the squared error (ISE) and the integral of time weighted squared error (ITSE) cost functions through transient response analysis method. The results show that the obtained optimal PI-controller improves the dynamic performance of the power system as expected as mentioned in literature. (C) 2010 Elsevier Ltd. All rights reserved.