Smart Low-Cost On-Board Charger for Electric Vehicles Using Arduino-Based Control †


Ramos-Hernanz J. A., Teso-Fz-Betoño D., Aramendia I., Erauzquin M., KURT E., Lopez-Guede J. M.

Energies, cilt.18, sa.8, 2025 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 18 Sayı: 8
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/en18081910
  • Dergi Adı: Energies
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Agricultural & Environmental Science Database, CAB Abstracts, Communication Abstracts, Compendex, INSPEC, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: Arduino, charging point, electric vehicle, on-board charger, PWM
  • Gazi Üniversitesi Adresli: Evet

Özet

The increasing adoption of electric vehicles (EVs) needs efficient and cost-effective charging solutions. This study presents a smart on-board charging system using low-cost materials while ensuring safe and optimized battery management. The proposed system is controlled by an Arduino MEGA 2560 microcontroller, integrating Pulse-Width Modulation (PWM) for precise voltage regulation and real-time monitoring of charging parameters, including voltage, current, and state of charge (SoC). The charging process is structured into three states (connection, standby, and charging) and follows a multi-stage strategy to prevent overcharging and prolong battery lifespan. A relay system and safety mechanisms detect disconnections and voltage mismatches, automatically halting charging when unsafe conditions arise. Experimental validation with a 12 V lead-acid battery verifies that the system follows standard charging profiles, ensuring optimal energy management and charging efficiency. The proposed charger demonstrates significant cost savings (~94.82 €) compared to commercial alternatives (1200 €–2000 €), making it a viable low-power solution for EV charging research and a valuable learning tool in academic environments. Future improvements include a printed circuit board (PCB) redesign to enhance system reliability and expand compatibility with higher voltage batteries. This work proves that affordable smart charging solutions can be effectively implemented using embedded control and modulation techniques.