INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, cilt.49, sa.6, ss.1605-1626, 2011 (SCI-Expanded)
Mixed-model assembly lines are widely used to improve the flexibility to adapt to the changes in market demand, and U-lines have become popular in recent years as an important component of just-in-time production systems. As a consequence of adaptation of just-in-time production principles into the manufacturing environment, mixed-model production is performed on U-lines. This type of a production line is called a mixed-model U-line. In mixed-model U-lines, there are two interrelated problems called line balancing and model sequencing. In real life applications, especially in manual assembly lines, the tasks may have varying execution times defined as a probability distribution. In this paper, the mixed-model U-line balancing and sequencing problem with stochastic task times is considered. For this purpose, a genetic algorithm is developed to solve the problem. To assess the effectiveness of the proposed algorithm, a computational study is conducted for both deterministic and stochastic versions of the problem.