Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine


ARABACI E., Icingur Y., SOLMAZ H., UYUMAZ A., Yilmaz E.

ENERGY CONVERSION AND MANAGEMENT, cilt.98, ss.89-97, 2015 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 98
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1016/j.enconman.2015.03.045
  • Dergi Adı: ENERGY CONVERSION AND MANAGEMENT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.89-97
  • Anahtar Kelimeler: Six-stroke engine, Exhaust heat recovery, Water injection, Engine performance, ENERGY RECOVERY, COMBUSTION, HEAT, LPG, START
  • Gazi Üniversitesi Adresli: Evet

Özet

In this study, the effects of water injection quantity and injection timing were investigated on engine performance and exhaust emissions in a six-stroke engine. For this purpose, a single cylinder, four-stroke gasoline engine was converted to six-stroke engine modifying a new cam mechanism and adapting the water injection system. The experiments were conducted at stoichometric air/fuel ratio (lambda = 1) between 2250 and 3500 rpm engine speed at full load with liquid petroleum gas. Water injection was performed at three different stages as before top dead center, top dead center and after top dead center at constant injection duration and four different injection pressure 25, 50, 75 and 100 bar. The test results showed that exhaust gas temperature and specific fuel consumption decreased by about 7% and 9% respectively. In contrast, fuel consumption and power output increased 2% and 10% respectively with water injection. Thermal efficiency increased by about 8.72% with water injection. CO and HC emissions decreased 21.97% and 18.23% until 3000 rpm respectively. NO emissions decreased with water injection as the temperature decreased at the end of cycle. As a result, it was seen that engine performance improved when suitable injection timing and injected water quantity were selected due to effect of exhaust heat recovery with water injection. (C) 2015 Elsevier Ltd. All rights reserved.