Preparation and characterization of colon-targeted pH/Time-dependent nanoparticles using anionic and cationic polymethacrylate polymers


Turanlı Y., Acartürk F.

European Journal of Pharmaceutical Sciences, cilt.171, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 171
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.ejps.2022.106122
  • Dergi Adı: European Journal of Pharmaceutical Sciences
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, International Pharmaceutical Abstracts, MEDLINE, Veterinary Science Database
  • Anahtar Kelimeler: Inflammatory Bowel Disease, Eudragit Nanoparticles, Controlled Release, Colon Targeting, INFLAMMATORY-BOWEL-DISEASE, IN-VITRO CHARACTERIZATION, CONTROLLED DRUG-DELIVERY, BUDESONIDE, RELEASE, EUDRAGIT(R), CHITOSAN, SYSTEMS, SINGLE, MICROSPHERES
  • Gazi Üniversitesi Adresli: Evet

Özet

© 2022 The Author(s)Inflammatory bowel disease (IBD), which is a chronic inflammatory disease of the gastrointestinal system, has two subtypes: Ulcerative Colitis (UC) and Crohn's Disease (CD). Only pH-sensitive drug delivery systems are commonly utilized for the treatment of IBD, but their effectiveness is frequently obstructed by the change in intestinal pH. To overcome the inadequacy of only pH-dependent delivery systems, we developed in vitro evaluated both pH- and time-dependent nanoparticles loaded budesonide (BUD) for the treatment of IBD in this study. Anionic polymethacrylate was utilized as a pH-dependent polymer whereas cationic polymethacrylate was utilized as a time-dependent sustained release polymer. Nanoparticles were prepared through a single oil-in-water emulsion/solvent evaporation method. The encapsulation efficiency, mean particle size, zeta potential, polydispersity index (PDI), drug release profiles, drug release kinetics, and stability of these nanoparticles were investigated. In all formulations, mean particle sizes were below 250 nm and PDI values were between 0.1 and 0.3. Nanoparticles containing 90% anionic-10% cationic polymethacrylate polymers inhibited burst BUD release under acidic conditions and exhibited sustained drug release at neutral pH. Consequently, in the medication of IBD, BUD-loaded pH and time-dependent nanoparticles may be a promising choice as a drug delivery system.