The primate-specific Nedd4-1(NE) localizes to late endosomes in response to amino acids to suppress autophagy


Creative Commons License

Kefalas G., Priya A., Astori A., Persaud A., Jing L., Sydor A., ...Daha Fazla

Nature Communications, cilt.16, sa.1, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 16 Sayı: 1
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1038/s41467-025-57944-x
  • Dergi Adı: Nature Communications
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Geobase, INSPEC, MEDLINE, Veterinary Science Database, Directory of Open Access Journals, Nature Index
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Gazi Üniversitesi Adresli: Evet

Özet

The ubiquitin ligase Nedd4 (Nedd4-1), comprised of C2-WW(n)-HECT domains, regulates protein trafficking. We recently described a primate-specific Nedd4-1 splice isoform with an extended N-terminus replacing the C2 domain, called Nedd4-1(NE). Here, we show that while canonical Nedd4-1 is primarily localized to the cytosol, Nedd4-1(NE) localizes to late endosomes. This localization is mediated by the NE region, is dependent on amino acid availability, is independent of mTORC1, and is inhibited by the autophagy inducer IKKβ. We further demonstrate that VPS16B, which regulates late endosome to lysosome maturation, is a unique Nedd4-1(NE) substrate that co-localizes with Nedd4-1(NE) in the presence of nutrients. Importantly, a potentially pathogenic homozygous variant identified in the NE region (E70Q) of a patient with lymphangiectasia and protein-losing enteropathy leads to reduced VPS16B ubiquitination by Nedd4-1(NE). Finally, we report that Nedd4-1(NE) inhibits autophagy, likely by disrupting late endosome to autophagosome maturation. This work identified an mTORC1-independent, IKK-driven mechanism to regulate Nedd4-1(NE) localization to late endosomes in primates in response to nutrient availability, and uncovered suppression of autophagy by this ubiquitin ligase.