A Novel Approach for Real-Time Enumeration of Escherichia coli ATCC 47076 in Water through High Multi-Functional Engineered Nano-Dispersible Electrode


Panhwar S., Aftab A., Keerio H. A., İLHAN H., Sarmadivaleh M., TAMER U.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY, cilt.168, sa.3, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 168 Sayı: 3
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1149/1945-7111/abec67
  • Dergi Adı: JOURNAL OF THE ELECTROCHEMICAL SOCIETY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Analytical Abstracts, Applied Science & Technology Source, Chemical Abstracts Core, Chimica, Compendex, Computer & Applied Sciences, INSPEC
  • Gazi Üniversitesi Adresli: Evet

Özet

The climate change is significantly evolving novel microbes in the environment. In addition, nanoscience is advancing promptly to provide environmentally friendly engineering solutions to detect these microbes (i.e., pathogenic bacteria and viruses) in blood and water. There is a need to develop smart and efficient nano-biosensor to detect the pathogens, Escherichia coli (ATCC 47076) in the drinking water to protect the public against the diseases like hemolytic uremic, gastroenteritis, and acute diarrheas. The immunomagnetic separation strategy enables detecting bacteria in water samples fast and efficiently. The developed sensor is capable for the detection targeted E. coli ATCC 46076 based on Stripping differential pulse voltammetry (SDPV) and Cyclic Voltammetry (CV) measurements with a dynamic linear range of 10(1) to 10(7) CFU ml(-1). Functionalized magnetite metal-organic frameworks (MOFs) serve as a capture probe and Spectro-electrochemical label. The developed disposable electrode offers advantages such as large dynamic range, high sensitivity, high selectivity, and short analysis time (5 min). As for as we know, this is the first report to display the potential of the AuNPs and MOFs nanoparticles based dispersible electrode for the detection of targeted E. coli from water and blood.