Approximation by Fuzzy (p, q)-Bernstein-Chlodowsky Operators


Yildiz Ozkan E.

Sahand Communications in Mathematical Analysis, cilt.19, sa.2, ss.113-132, 2022 (ESCI) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 19 Sayı: 2
  • Basım Tarihi: 2022
  • Doi Numarası: 10.22130/scma.2022.524506.910
  • Dergi Adı: Sahand Communications in Mathematical Analysis
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, zbMATH, Directory of Open Access Journals
  • Sayfa Sayıları: ss.113-132
  • Anahtar Kelimeler: Approximation by polynomials, Modulus of continuity, Asymptotic expansions, Fuzzy numbers, KANTOROVICH OPERATORS, BERNSTEIN, Q)-ANALOG
  • Gazi Üniversitesi Adresli: Evet

Özet

© 2022 EJPAM All rights reserved.In this study, we purpose to extend approximation properties of the (p, q)-Bernstein-Chlodowsky operators from real function spaces to fuzzy function spaces. Firstly, we define fuzzy (p, q)-Bernstein-Chlodowsky operators, and we give some auxiliary results. Later, we give a fuzzy Korovkin-type approximation theorem for these operators. Additionally, we investigate rate of convergence by using first order fuzzy modulus of continuity and Lipschitztype fuzzy functions. Eventually, we give an estimate for fuzzy asymptotic expansions of the fuzzy (p, q)-Bernstein-Chlodowsky operators.