PHILOSOPHICAL MAGAZINE, cilt.90, sa.26, ss.3591-3599, 2010 (SCI-Expanded)
Low temperature electrical measurements of conductivity, the Hall effect and magnetoconductance were performed on a degenerate AlGaN sample. The sample exhibited negative magnetoconductance at low magnetic fields and low temperatures, with the magnitude being systematically dependent on temperature. The measured magnetoconductance was compared with models proposed previously by Sondheimer and Wilson [Proc. R. Soc. Lond. Ser. A 190 (1947) p. 435] and Lee and Ramakrishan [Rev. Mod. Phys. 57 (1985) p. 287]. Data were analyzed as the sum of the contribution of a two- band and electron-electron interactions to the magnetoconductance, applying these models to describe the observed behavior. Least-squares fits to the data are presented. In the sample, magnetoconductance can be explained reasonably well by assuming these contributions to the measured magnetoconductance. It was found that theoretical and experimental data were in excellent agreement.