ON ADS MODULES AND RINGS


Truong Cong Quynh T. C. Q., Kosan M. T.

COMMUNICATIONS IN ALGEBRA, cilt.42, sa.8, ss.3541-3551, 2014 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 42 Sayı: 8
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1080/00927872.2013.788185
  • Dergi Adı: COMMUNICATIONS IN ALGEBRA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.3541-3551
  • Gazi Üniversitesi Adresli: Hayır

Özet

A right module M over a ring R is said to be ADS if for every decomposition M=S circle plus T and every complement T of S, we have M=S circle plus T. In this article, we study and provide several new characterizations of this new class of modules. We prove that M is semisimple if and only if every module in sigma[M] is ADS. SC and SI rings also characterized by the ADS notion. A ring R is right SC-ring if and only if every 2-generated singular R-module is ADS.