TECHNOLOGIES, cilt.7, sa.3, 2019 (ESCI)
This study presents a cellular automata (CA) model to assist decision-makers in understanding the effects of infrastructure development projects on adverse events in an active war theater. The adverse events are caused by terrorist activities that primarily target the civilian population in countries such as Afghanistan. In the CA-based model, cells in the same neighborhood synchronously interact with one another to determine their next states, and small changes in iteration yield to complex formations of adverse event risks. The results demonstrate that the proposed model can help in the evaluation of infrastructure development projects in relation to changes in the reported adverse events, as well as in the identification of the geographical locations, times, and impacts of such developments. The results also show that infrastructure development projects have different impacts on the reported adverse events. The CA modeling approach can be used to support decision-makers in allocating infrastructure development funds to stabilize active war regions with higher adverse event risks. Such models can also improve the understanding of the complex interactions between infrastructure development projects and adverse events.