Organic and inorganic semiconducting materials-based SERS: recent developments and future prospects


Özdemir R., Özkan Hüküm K., Usta H., Demirel G.

JOURNAL OF MATERIALS CHEMISTRY C, cilt.12, ss.15276-15309, 2024 (SCI-Expanded)

  • Yayın Türü: Makale / Derleme
  • Cilt numarası: 12
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1039/d4tc02391a
  • Dergi Adı: JOURNAL OF MATERIALS CHEMISTRY C
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, INSPEC, MEDLINE, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.15276-15309
  • Gazi Üniversitesi Adresli: Evet

Özet

Surface-enhanced Raman spectroscopy (SERS) with high sensitivity/selectivity is a powerful analytical

tool and has been widely used, particularly in the fields of chemistry, spectroscopy, molecular detection,

food safety, anti-counterfeiting, and environmental monitoring. Conventional SERS detection relies on

plasmonic materials (e.g., Au and Ag nanostructures) with exceedingly high enhancement factors up to

1012. However, these substrates encounter significant limitations, including poor reproducibility, high

cost, lack of selectivity, limited SERS active area leading to inconsistent field enhancement and SERS

signals, and the possibility of the photothermal decomposition of the analyte species. These drawbacks

have the potential to impede detection accuracy and hinder large-scale practical applications. This

review focuses on alternative approaches based on noble metal-free SERS substrates. Considering

recent advancements in the field of SERS active platforms, we first introduce the implementation of

inorganic compounds, including metal oxides, transition metal sulfides/-selenides/-tellurides, 2-D

layered transition metal carbides and nitrides (Mxenes), metal–organic frameworks (MOFs), and single

elemental inorganic materials for Raman signal enhancement applications. In the second part of the

review, we highlight the fast-growing field of SERS-active organic platforms. Moreover, we discuss the

promises and challenges for the future direction of organic and inorganic material-based SERS.