SENSORS, vol.25, no.17, pp.1-33, 2025 (SCI-Expanded)
The growing demand for electricity and the urgent need to reduce environmental impact have made sustainable energy utilization a global priority. Street lighting, as a significant consumer of urban electricity, requires innovative solutions to enhance efficiency and reliability. This study presents an off-grid smart street lighting system that combines solar photovoltaic generation with battery storage and Internet of Things (IoT)-based control to ensure continuous and efficient operation. The system integrates Long Range Wide Area Network (LoRaWAN) communication technology for remote monitoring and control without internet connectivity and employs the Perturb and Observe (P&O) maximum power point tracking (MPPT) algorithm to maximize energy extraction from solar sources. Data transmission from the LoRaWAN gateway to the cloud is facilitated through the Message Queuing Telemetry Transport (MQTT) protocol, enabling real-time access and management via a graphical user interface. Experimental results demonstrate that the proposed system achieves a maximum MPPT efficiency of 97.96%, supports reliable communication over distances of up to 10 km, and successfully operates four LED streetlights, each spaced 400 m apart, across an open area of approximately 1.2 km—delivering a practical, energy-efficient, and internet-independent solution for smart urban infrastructure.