New Techniques in Profiling Big Datasets for Machine Learning with A Concise Review of Android Mobile Malware Datasets


Canbek G., SAĞIROĞLU Ş. , TAŞKAYA TEMİZEL T.

International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), Ankara, Turkey, 3 - 04 December 2018, pp.117-121 identifier

  • Publication Type: Conference Paper / Full Text
  • Volume:
  • City: Ankara
  • Country: Turkey
  • Page Numbers: pp.117-121

Abstract

As the volume, variety, velocity aspects of big data are increasing, the other aspects such as veracity, value, variability, and venue could not be interpreted easily by data owners or researchers. The aspects are also unclear if the data is to be used in machine learning studies such as classification or clustering. This study proposes four techniques with fourteen criteria to systematically profile the datasets collected from different resources to distinguish from one another and see their strong and weak aspects. The proposed approach is demonstrated in five Android mobile malware datasets in the literature and in security industry namely Android Malware Genome Project, Drebin, Android Malware Dataset, Android Botnet, and Virus Total 2018. The results have shown that the proposed profiling methods reveal remarkable insight about the datasets comparatively and directs researchers to achieve big but more visible, qualitative, and internalized datasets.