Critical exponents of the three-dimensional Blume-Capel model on a cellular automaton


Creative Commons License

Ozkan A., Seferoglu N., Kutlu B.

PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, cilt.362, sa.2, ss.327-337, 2006 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 362 Sayı: 2
  • Basım Tarihi: 2006
  • Doi Numarası: 10.1016/j.physa.2005.08.065
  • Dergi Adı: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.327-337
  • Anahtar Kelimeler: Blume-Capel model, Creutz cellular automaton, finite-size scaling, universality, simple cubic lattice, BETHE-PEIERLS APPROXIMATION, 2-DIMENSIONAL ISING-MODEL, TRICRITICAL BEHAVIOR, PHASE-DIAGRAM, POTTS-MODEL, MONTE-CARLO, SIMULATION, FERROMAGNET, FIELD, TRANSITION
  • Gazi Üniversitesi Adresli: Evet

Özet

The static critical exponents of the three-dimensional Blume-Capel model which has a tricritical point at D/J = 2.82 value are estimated for the standard and the cooling algorithms which improved from Creutz cellular automaton. The analyses of the data using the finite-size scaling and power-law relations reproduce their well-established values in the D/J < 3 and D/J < 2.8 parameter region at standard and cooling algorithms, respectively. For the cooling algorithm at D/J = 2.8 value of single-ion anisotropy parameter, the static critical exponents are estimated as beta = 0.31, gamma = gamma' = 1.6, alpha = alpha' = 0.32 and nu = 0.87. These values are different from beta = 0.31, gamma = gamma' = 1.25, alpha = alpha' = 0.12 and nu = 0.64 universal values. This case indicated that the BC model exhibits an ununiversal critical behavior at the D/J = 2.8 parameter value near the tricritical point (D/J = 2.82). The simulations were carried out on a simple cubic lattice with periodic boundary conditions. (c) 2005 Elsevier B.V. All rights reserved.