Specific heat analyses on optical-phonon-derived uniaxial negative thermal expansion system <i>Tr</i>Zr<sub>2</sub> (<i>tr</i> = fe and Co<sub>1-<i>x</i></sub>Ni<sub><i>x</i></sub>)


Creative Commons License

Watanabe Y., TAYRAN C., Kasem M. R., Yamashita A., ÇAKMAK M., Katase T., ...Daha Fazla

SCIENTIFIC REPORTS, cilt.14, sa.1, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 1
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1038/s41598-024-79353-8
  • Dergi Adı: SCIENTIFIC REPORTS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Chemical Abstracts Core, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Gazi Üniversitesi Adresli: Evet

Özet

A large uniaxial negative thermal expansion (NTE) along the c-axis has recently been observed in the transition metal (Tr) zirconides TrZr2 with a tetragonal CuAl2-type structure. A recent study on FeZr2 [M. Xu et al., Nat. Commun. 14, 4439 (2023)] suggests that optical phonons play a critical role in inducing the NTE along the c-axis. In this study, we investigate the thermophysical properties of TrZr2 compounds (Tr = Fe and Co1- xNix(x = 0, 0.2, 0.4, 0.6, 0.8, 1)) using specific heat measurements, sound velocity data, and theoretical phonon calculations to achieve our aim of clarifying the contribution of optical phonons to the uniaxial NTE along the c-axis observed in both FeZr2 and CoZr2. We found that FeZr2 shows a lattice-specific heat peak structure at 8.90 meV, which corresponds to optical phonon energy with a high population of negative Gr & uuml;neisen parameter along the c-axis in the phonon dispersion curves in FeZr2. In an examination of a chemical substitution effect on the Co1- xNixZr2, we found that the lattice-specific heat peak structure disappeared for x >= 0.4 and the oscillator intensity decreased. Phonon calculations revealed the existence of low-energy optical phonon branches at the Gamma point for CoZr2 and FeZr2 with uniaxial NTE along the c-axis. However, the low-energy phonon branches were not found in NiZr2 with uniaxial positive thermal expansion along the c-axis. The increase in phonon density of states near the above optical phonon energy in CoZr2 and FeZr2 is consistent with the lattice-specific heat analyses, and we propose that low-energy optical phonons are essential for the exhibiting of uniaxial NTE along the c-axis in TrZr2.