Performance Modeling of Rooftop PV Systems in Arid Climate, a Case Study for Qatar: Impact of Soiling Losses and Albedo Using PVsyst and SAM


Jain S., Abdelrahim M., Abdallah A. A., Pillai D. S., Bayhan S.

ENERGIES, cilt.18, sa.22, 2025 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 18 Sayı: 22
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/en18225876
  • Dergi Adı: ENERGIES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, INSPEC, Directory of Open Access Journals
  • Gazi Üniversitesi Adresli: Hayır

Özet

This study presents a comparative performance modeling and optimization framework for a 5 kWp rooftop photovoltaic (PV) system in Qatar, using two widely adopted simulation tools, PVsyst and the System Advisor Model (SAM). The research addresses a key limitation in existing PV modeling practice: the restricted capability of standard software to represent site-specific soiling and dynamic albedo effects under arid climatic conditions. To overcome these limitations, the Humboldt State University (HSU) soiling model was calibrated using field measurements from a DustIQ sensor, and its parameters, rainfall cleaning threshold and particulate deposition velocity were optimized through a Differential Evolution algorithm. Additionally, the study utilized dynamic albedo inputs to better account for ground-reflectance effects in energy yield simulations. The optimized approach reduced the root mean square error (RMSE) of predicted soiling ratios from 7.30 to 1.93 and improved the agreement between simulated and measured monthly energy yields for 2024, achieving normalized RMSE values of 4.66% in SAM and 4.86% in PVsyst. The findings demonstrate that coupling data-driven soiling optimization with refined albedo representation modernizes the predictive capabilities of PVsyst and SAM, yielding more reliable performance forecasts. This methodological advancement supports better-informed design and operation of rooftop PV systems in desert environments where soiling and reflectivity effects are pronounced.