Investigation on the properties ofCu(2)ZnSnSe(4)andCu(2)ZnSn(S,Se)(4)absorber films prepared by magnetron sputtering technique usingZnandZnStargets in precursor stacks


Akcay N., Gremenok V. F., Zaretskaya E. P., ÖZÇELİK S.

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, cilt.45, sa.2, ss.2398-2415, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 2
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1002/er.5935
  • Dergi Adı: INTERNATIONAL JOURNAL OF ENERGY RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), Communication Abstracts, Compendex, Environment Index, INSPEC, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.2398-2415
  • Anahtar Kelimeler: Cu(2)Sesecondary phase, Cu2ZnSnSe4, MoSe2, selenization, thin film solar cells, ZnandZnStargets, CU2ZNSNS4 THIN-FILMS, PLUS SN) RATIO, SOLAR-CELLS, ABSORBER LAYER, KESTERITE CU2ZNSNS4, OPTICAL-PROPERTIES, GRAIN-BOUNDARIES, RAMAN-SCATTERING, SULFUR-CONTENT, CZTS
  • Gazi Üniversitesi Adresli: Evet

Özet

Cu(2)ZnSnSe(4)and Cu2ZnSn(S,Se)(4)absorber films were grown on soda lime glass and Mo-coated soda lime glass substrates by deposition of the precursor films via RF magnetron sputtering method in the stacking orders of Cu/Sn/Zn/Mo/SLG and Cu/Sn/ZnS/Mo/SLG using metallic Zn or binary sulfide ZnS targets and subsequently carrying out of selenization process. It was aimed to find out the effect of Zn or ZnS target types and the small amount of S originated from ZnS target material used in the deposition of precursor films on the structural, morphological, optical, and electrical characteristics of the films to be selenized. XRD and Raman spectroscopy analysis showed that the kesterite CZTSe structure was predominantly formed in both cases where Zn and ZnS targets were used. According to the EDX analysis, S content in the prepared film using ZnS target was only around 1.79 at%. This indicated that a considerable amount of S in the film was driven out during the selenization process. Scanning electron microscopy analysis revealed that ZnS target material contributed to the achievement of the absorber films with larger grain size. It was also determined that the thickness of the interfacial MoSe(2)film between the absorber and Mo films decreased by using ZnS target in the precursor film. This was attributed to ZnS layer with a high melting point acting as a barrier layer over Mo film and retarding the diffusion of Se into the Mo film during the selenization process. In addition, the band gap energy values of the Cu(2)ZnSnSe(4)and Cu2ZnSn(S,Se)(4)films were found to be 1.18 and 1.28 eV, respectively.