Tezin Türü: Doktora
Tezin Yürütüldüğü Kurum: Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye
Tezin Onay Tarihi: 2019
Öğrenci: ALİ ŞENOL
Danışman: HACER KARACAN
Özet:Klasik kümeleme yaklaşımlarında veri statiktir. Veri, bir yere kaydedilerek tekrar tekrar işlenebilmektedir. Oysa günümüz teknolojisinde, verinin çok hızlı olduğu dünyada, artık veriyi akarken kümeleyecek, kullanıcıya istediği zaman sonuç verebilecek uygulamalara ihtiyaç vardır. Bu anlamda ihtiyacı karşılayan akan veri kümeleme yaklaşımlarına olan talep gün geçtikçe artmaktadır. Çünkü akan veri kümeleme yaklaşımları veriyi bir defa okumalı, hızlı ve kendisini yeni gelen veriye uyarlama özelliğine sahiptir. Yani bir yandan veri akarken, bir yandan kullanıcıya sonuç üretilebilmektedir. Bu tez çalışmasında akan veri üzerinde gerçek zamanlı kümeleme yapan KD-ARFS Stream algoritması önerilmiştir. Önerdiğimiz yaklaşım gücünü çok boyutluluğu destekleyen k-boyutlu ağaç (kd-tree), uyarlanabilir yarıçap ve standart sapma tabanlı öznitelik seçme özelliklerinden almaktadır. KD-ARFS Stream algoritmasının başarısını ölçmek için SE-Stream, CEDAS, pcStream ve DPStream algoritmaları ile toplam harcanan süre ve kümeleme başarısı açılarından karşılaştırılmıştır. Deneysel çalışmalar KD-ARFS Stream algoritmasının daha iyi kümeleme başarısını makul bir sürede verdiğini göstermiştir