Numerical optimization of In-mole fractions and layer thicknesses in AlxGa1-xN/AlN/GaN high electron mobility transistors with InGaN back barriers

Creative Commons License

Kelekci O., LİŞESİVDİN S. B. , Ozcelik S. , Ozbay E.

Physica B: Condensed Matter, cilt.406, sa.8, ss.1513-1518, 2011 (SCI Expanded İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 406 Konu: 8
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1016/j.physb.2011.01.059
  • Dergi Adı: Physica B: Condensed Matter
  • Sayfa Sayıları: ss.1513-1518


The effects of the In-mole fraction (x) of an InxGa 1-xN back barrier layer and the thicknesses of different layers in pseudomorphic AlyGa1-yN/AlN/GaN/InxGa 1-xN/GaN heterostructures on band structures and carrier densities were investigated with the help of one-dimensional self-consistent solutions of non-linear SchrdingerPoisson equations. Strain relaxation limits were also calculated for the investigated AlyGa1-yN barrier layer and InxGa1-xN back barriers. From an experimental point of view, two different optimized structures are suggested, and the possible effects on carrier density and mobility are discussed. © 2011 Elsevier B.V. All rights reserved.